Existence of two twinning-mediated plastic deformation modes in Au nanowhiskers

نویسندگان

  • Andreas Sedlmayr
  • Erik Bitzek
  • Daniel S. Gianola
  • Gunther Richter
  • Reiner Mönig
  • Oliver Kraft
چکیده

We have performed in situ scanning electron microscopy tensile experiments and molecular dynamics (MD) simulations on nominally defect-free single-crystalline Au nanowhiskers. The room temperature experiments reveal strengths on the order of the ideal strength and plastic strains of up to 12%, a direct result of deformation twinning that governs plastic flow. The in situ and post mortem electron microscopy observations can be divided into two broad classes of deformation morphologies that correlate with distinct stress–strain responses. MD simulations show that the mechanism of twin growth can change from layer-by-layer propagation to parallel and accelerated formation of coalescing nanotwins. The transition between mechanisms is caused by the bending moment resulting from the augmented stress state due to the initial twin and the boundary conditions when a twin grows beyond an embryonic state. These distinct manifestations of deformation twinning suggest that nanoscale material behavior can be tailored for high tensile ductility in addition to ultra-high strength. 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abnormal Plastic Behavior of Fine Grain Mp35n Alloy During Room Temperature Tensile Testing

In this paper, results of an investigation on the strain hardening responses of superalloy MP35N with two average grain sizes of 38 and 1 μm, during room temperature tensile testing are reported. The microstructural evolution of the deformed samples was studied using optical and transmission electron microscopy (TEM) techniques. The strain hardening behavior of the 38 μm material was rather sim...

متن کامل

Effect of Deformation Temperature on the Mechanical Behavior of a New TRIP/TWIP Steel Containing 21% Manganese

In recent years, TRIP/TWIP steels have been the focus of great attention thanks due to their excellent tensile strength-ductility combination. The compression tests were performed at different temperatures from 25 to1000°C to study the mechanical behavior of advanced austenitic steel with 21% manganese plus bearing Ti. The results indicated that the plastic deformation is controlled by deformat...

متن کامل

Effect of surface energy on size-dependent deformation twinning of defect-free Au nanowires.

In this study, we report the size-dependent transition of deformation twinning studied using in situ SEM/TEM tensile testing of defect-free [110] Au nanowires/ribbons with controlled geometry. The critical dimension below which the ordinary plasticity transits to deformation twinning is experimentally determined to be ∼170 nm for Au nanowires with equilateral cross-sections. Nanoribbons with a ...

متن کامل

In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten.

Twinning is a fundamental deformation mode that competes against dislocation slip in crystalline solids. In metallic nanostructures, plastic deformation requires higher stresses than those needed in their bulk counterparts, resulting in the 'smaller is stronger' phenomenon. Such high stresses are thought to favour twinning over dislocation slip. Deformation twinning has been well documented in ...

متن کامل

An investigation into finding the optimum combination for dental restorations

The aim of the study was to find the optimum combination of materials and thicknesses to provide a tough, damage resistant multi-layer system with numerical methods to restore the damaged teeth. Extended Finite Element Method (XFEM) was used to assess the critical loads for the onset of damage modes such as radial cracks and plastic deformation in dental prostheses, which consist of a brittle o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012